
����� �����

Author Author

�����

Author

Improving the Responsiveness of GUI Applications

Interesting Questions

Why Qt Embedded?About Tessellation

 Tessellation is a many-core
operating system

 Cores are partitioned into cells
 The cores are partitioned both in

space and in time

 Cells may communicate with
each other using channels
 Channels provide asynchronous

communication

 Cells that specialize in providing
a service are called service cells
 These often represent interfaces to

hardware resources
 You might have a network service

for a network card

Albert Kim, Juan Colmenares, John Kubiatowicz

Considerations

 Qt Embedded assumes that the underlying OS
is very Linux-like (e.g. tty, sockets)

 Qt uses UNIX sockets in the file system to
communicate between client and server
 Tessellation will use channels for this and breaks the

UNIX philosophy of doing everything through the file
system

 Clients render their graphics on to shared
memory and expect servers to read from shared
memory
 Tessellation does not have any plans for shared

memory, so channels will be used to transfer the
rendered graphics from client to the GUI service

 Still, shared memory and channels don’t have a one-
to-one correlation: shared memory is persistent and
channels don’t need locks to synchronize
communication

 What resource should the GUI service quantify
and guarantee to connecting applications?
 Paint events take a variable amount of time, so may

not be good
 CPU time is a possible option
 Number of pixels drawn is another option

 For a GUI service that uses multiple cores, how
should it schedule the cores so that the work
can be parallelized correctly?
 Assigning a core per application is a simple solution,

but is not scalable
 Perhaps each core can handle a part of the screen

 The clients do the actual rendering, so how can
we parallelize the client?
 Qt framework already divides the total area that is to

be painted into multiple paint jobs; we can split these
jobs on to separate cores, but then we need to write to
the channel in a synchronous manner

 How can GUI cells adapt to limited resources
and report it adaptation to the policy service in a
way that makes sense?
 Shadowing on images may be considered a luxury and

may only be turned on if there are enough cores
available

 Qt Embedded runs directly on top of the
framebuffer (no X!)

 Qt framework is platform-independent
 Qt applications don’t need to be ported; the apps will

“just work” on top of ported Qt Embedded

 Qt is very self-contained, so we don’t need to
port a lot of other libraries

 Qt framework provides many additional libraries
that future applications can use

 Qt Embbeded has a client/server model
1. The server receives an event (e.g. keypress)
2. The server finds which client it should forward the

event to and forwards it using UNIX sockets
3. The client reacts to the event and usually ends up

needing to draw something. The client renders its
graphics to the shared memory

4. The server realizes that a client needs updating and
reads from shared memory

5. The server copies the memory content to the
framebuffer device, which renders the graphics on to
the screen

Berkeley Parlab

Porting Qt Embedded To

Tessellation OS

Server

Client

Shared Memory
Event

Framebuffer

1

2

3

4
5

The Plan

 Have one GUI service cell that has unique access to
the framebuffer
 The GUI service will also handle all input sources (e.g. mouse)

 GUI applications will start up in separate cells and
contact the GUI service to have their graphics
rendered
 The applications will be guaranteed access to the GUI service

at some fixed rate

Framebuffer

Mouse

Keyboard GUI Service

GUI Application GUI Application

 Cells’ performances are monitored and the policy service
may hand out more resources if performance is too low

GUI Service

Policy Service

Tessellation Kernel

Performance Report

Additional

Resource

Request Resources

Research supported by Microsoft (Award

#024263) and Intel (Award #024894) funding

and by matching funding by U.C. Discovery

(Award #DIG07-10227).

